

International Journal of Mass Spectrometry 240 (2005) 329-331

www.elsevier.com/locate/ijms

Subject index Volume 240

Ab initio

Ab initio molecular orbital investigation of $SiOH^+-XH$, $SiOH^+-X_2$ and $SiOH^+-XY(YX)$ (X=Y=F, Cl and Br) proton-bond complexes, 1

Ab initio molecular orbital electronic structure theory

Theoretical methods that help understanding the structure and reactivity of gas phase ions, 37

Acidity

Insights into nucleic acid reactivity through gas-phase experimental and computational studies, 261

Adducts

Investigation of the mechanism of matrix adduct formation in MALDI at elevated pressure, 101

Adiabatic electron affinity

The aluminum phosphides Al_mP_n (m+n=2-5) and their anions: structures, electron affinities and vibrational frequencies, 149

Aldose-ketose isomers

Kinetic measurements of phosphoglucose isomerase and phospho mannose isomerase by direct analysis of phosphorylated aldose–ketose isomers using tandem mass spectrometry, 291

Alkali cations

Sequential bond energies of water to sodium glycine cation, 233 Amide $\mathrm{H}\mathrm{J}^2\mathrm{H}$ exchange

Protein–protein interaction dynamics by amide H/²H exchange mass spectrometry, 285

Amino acids

Sequential bond energies of water to sodium glycine cation, 233

Ammonium group

Hydration of small peptides, 221

AMT

Ultra-sensitive, high throughput and quantitative proteomics measurements, 195

Archaea

Top-down, bottom-up, and side-to-side proteomics with virtual 2-D gels, 317

Association constant

PLIMSTEX: a novel mass spectrometric method for the quantification of protein-ligand interactions in solution, 213

Biopolymers

Ion mobility-mass spectrometry: a new paradigm for proteomics, 301

Bond dissociation energies

Sequential bond energies of water to sodium glycine cation, 233

Carbon clusters

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

Carboxylate group

Hydration of small peptides, 221

 C_2D

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

 C_3D

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

 CD^{\dagger}

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

CH activation

Competitive reactions and diastereoselective CH bond activation in the McLafferty rearrangement of photoionized 3-methyl valeramide, 121

Charge transfer

Ab initio molecular orbital investigation of $SiOH^+-XH$, $SiOH^+-X_2$ and $SiOH^+-XY(YX)$ (X = Y = F, Cl and Br) proton-bond complexes, 1

Cluster

Investigation of the mechanism of matrix adduct formation in MALDI at elevated pressure, 101

 C_n

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

Collisional cooling

Investigation of the mechanism of matrix adduct formation in MALDI at elevated pressure, 101

Conformational change

PLIMSTEX: a novel mass spectrometric method for the quantification of protein-ligand interactions in solution, 213

Conformations

Structural motifs of DNA complexes in the gas phase, 183

Cora

Uranium-series dating of corals in situ using laser-ablation MC-ICPMS, 27

Density functional theory

Theoretical methods that help understanding the structure and reactivity of gas phase ions. 37

The aluminum phosphides Al_mP_n (m+n=2-5) and their anions: structures, electron affinities and vibrational frequencies, 149

Distonic ions

Competitive reactions and diastereoselective CH bond activation in the McLafferty rearrangement of photoionized 3-methyl valeramide, 121

DNA

Structural motifs of DNA complexes in the gas phase, 183 Insights into nucleic acid reactivity through gas-phase experimental and computational studies, 261

Drift correction

Secondary ion mass spectrometry measurements of isotopic ratios: correction for time varying count rate, 107

ECD

Is it biologically relevant to measure the structures of small peptides in the gas-phase?, 273

Electron ionization

Fragmentation and skeletal rearrangements of products of the reaction between fluorobenzenes and bicyclic N-bases studied by electron ionization mass spectrometry, 7

Enzyme nucleobase

Insights into nucleic acid reactivity through gas-phase experimental and computational studies, 261

330 Subject index

ESI-MS

PLIMSTEX: a novel mass spectrometric method for the quantification of protein-ligand interactions in solution, 213

Fluoronitroaniline derivatives

Fragmentation and skeletal rearrangements of products of the reaction between fluorobenzenes and bicyclic N-bases studied by electron ionization mass spectrometry, 7

Fragmentation pathways

Fragmentation and skeletal rearrangements of products of the reaction between fluorobenzenes and bicyclic N-bases studied by electron ionization mass spectrometry, 7

FT-ICR

Is it biologically relevant to measure the structures of small peptides in the gas-phase?, 273

Guanidinium group

Hydration of small peptides, 221

Guided ion beam mass spectrometry

Sequential bond energies of water to sodium glycine cation, 233

H/D exchange

PLIMSTEX: a novel mass spectrometric method for the quantification of protein-ligand interactions in solution, 213

Heliv

Structural motifs of DNA complexes in the gas phase, 183

2-Heptanone

Electron impact ionisation cross-sections of 2-heptanone, 161

Hydration

Sequential bond energies of water to sodium glycine cation, 233 Protein–protein interaction dynamics by amide H/²H exchange mass spectrometry, 285

Hydrogen exchange

Probing protein dynamics and function under native and mildly denaturing conditions with hydrogen exchange and mass spectrometry, 249

Immobilized pH gradient gels

Top-down, bottom-up, and side-to-side proteomics with virtual 2-D gels, 317

Interpolation

Secondary ion mass spectrometry measurements of isotopic ratios: correction for time varying count rate, 107

Ion mobility

Structural motifs of DNA complexes in the gas phase, 183

Is it biologically relevant to measure the structures of small peptides in the gas-phase?, 273

Ion mobility-mass spectrometry: a new paradigm for proteomics, 301 Ion mobility-mass spectrometry

Ion mobility-mass spectrometry: a new paradigm for proteomics, 301 Ion trap

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

Ionisation cross-section

Electron impact ionisation cross-sections of 2-heptanone, 161

Ion-molecule reactions

Investigation of the mechanism of matrix adduct formation in MALDI at elevated pressure, $101\,$

Ion-neutral complexes

Competitive reactions and diastereoselective CH bond activation in the McLafferty rearrangement of photoionized 3-methyl valeramide, 121 M molecules

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

Isotope effects

Competitive reactions and diastereoselective CH bond activation in the McLafferty rearrangement of photoionized 3-methyl valeramide, 121

Isotope fractionation

A method for determining isotopic composition of elements by thermal ionization source mass spectrometry, 17

Isotope ratios

A method for determining isotopic composition of elements by thermal ionization source mass spectrometry, 17

Isotopic ratio

Secondary ion mass spectrometry measurements of isotopic ratios: correction for time varying count rate, 107

Kinetic measurements

Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose–ketose isomers using tandem mass spectrometry, 291

Laboratory astrochemistry

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

Laser ablation

Uranium-series dating of corals in situ using laser-ablation MC-ICPMS, 27

LC-MS

Ultra-sensitive, high throughput and quantitative proteomics measurements, 195

Linear model

A method for determining isotopic composition of elements by thermal ionization source mass spectrometry, 17

Low and high temperature ion-molecule collisions

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

MALDI

Investigation of the mechanism of matrix adduct formation in MALDI at elevated pressure, 101

MALDI-TOF mass spectrometry

Protein-protein interaction dynamics by a mide $\mathrm{H}/^{2}\mathrm{H}$ exchange mass spectrometry, 285

Mass spectrometry

A method for determining isotopic composition of elements by thermal ionization source mass spectrometry, 17

Competitive reactions and diastereoselective CH bond activation in the McLafferty rearrangement of photoionized 3-methyl valeramide, 121

Electron impact ionisation cross-sections of 2-heptanone, 161

Probing protein dynamics and function under native and mildly denaturing conditions with hydrogen exchange and mass spectrometry, 249

Ion mobility-mass spectrometry: a new paradigm for proteomics, 301 MC-ICPMS

Uranium-series dating of corals in situ using laser-ablation MC-ICPMS,

Methanosarcina acetivorans

Top-down, bottom-up, and side-to-side proteomics with virtual 2-D gels, 317

NBO

Ab initio molecular orbital investigation of $SiOH^+$ –XH, $SiOH^+$ –X₂ and $SiOH^+$ –XY(YX) (X = Y = F, Cl and Br) proton-bond complexes, 1 include acids

Insights into nucleic acid reactivity through gas-phase experimental and computational studies, 261

Peptide conformation

Hydration of small peptides, 221

Peptides

Is it biologically relevant to measure the structures of small peptides in the gas-phase?, 273

Subject index 331

Phosphoglucose isomerase

Kinetic measurements of phosphoglucose isomerase and phospho mannose isomerase by direct analysis of phosphorylated aldose–ketose isomers using tandem mass spectrometry, 291

Phosphomannose isomerase

Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose–ketose isomers using tandem mass spectrometry, 291

Protein conformation

Probing protein dynamics and function under native and mildly denaturing conditions with hydrogen exchange and mass spectrometry, 249

Protein dynamics

Probing protein dynamics and function under native and mildly denaturing conditions with hydrogen exchange and mass spectrometry, 249

Protein folding

Probing protein dynamics and function under native and mildly denaturing conditions with hydrogen exchange and mass spectrometry, 249

Protein interface

Protein-protein interaction dynamics by amide H/²H exchange mass spectrometry, 285

Protein-ligand interaction

PLIMSTEX: a novel mass spectrometric method for the quantification of protein-ligand interactions in solution, 213

Proteomic measurements

Ultra-sensitive, high throughput and quantitative proteomics measurements, 195

Proteomics

Ion mobility-mass spectrometry: a new paradigm for proteomics, 301 Top-down, bottom-up, and side-to-side proteomics with virtual 2-D gels, 317

Proton affinity

Insights into nucleic acid reactivity through gas-phase experimental and computational studies, 261

Proton transfer

Reactions of C_n (n = 1-3) with ions stored in a temperature-variable radio-frequency trap, 139

Proton-bond complexes

Ab initio molecular orbital investigation of $SiOH^+-XH$, $SiOH^+-X_2$ and $SiOH^+-XY(YX)$ (X = Y = F, Cl and Br) proton-bond complexes, 1

Quantum Monte Carlo theory

Theoretical methods that help understanding the structure and reactivity of gas phase ions, 37

RNA

Insights into nucleic acid reactivity through gas-phase experimental and computational studies, 261

Secondary ion mass spectrometry

Secondary ion mass spectrometry measurements of isotopic ratios: correction for time varying count rate, 107

Stability

Ab initio molecular orbital investigation of $SiOH^+$ –XH, $SiOH^+$ –X2 and $SiOH^+$ –XY(YX) (X = Y = F, Cl and Br) proton-bond complexes, 1

Steric effects

Competitive reactions and diastereoselective CH bond activation in the McLafferty rearrangement of photoionized 3-methyl valeramide, 121

The curved-field reflectron: PSD and CID without scanning, stepping or lifting, 169

Surface hopping

Theoretical methods that help understanding the structure and reactivity of gas phase ions, 37

Tandem

The curved-field reflectron: PSD and CID without scanning, stepping or lifting, 169

Tandem mass spectrometry

Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose–ketose isomers using tandem mass spectrometry, 291

Temporal variation

Secondary ion mass spectrometry measurements of isotopic ratios: correction for time varying count rate, 107

Thermal ionization

A method for determining isotopic composition of elements by thermal ionization source mass spectrometry, 17

Time dependent density functional theory

Theoretical methods that help understanding the structure and reactivity of gas phase ions, 37

Time-of-flight

The curved-field reflectron: PSD and CID without scanning, stepping or lifting, 169

TOF/TOF

The curved-field reflectron: PSD and CID without scanning, stepping or lifting, 169

Two-state reactivity

Theoretical methods that help understanding the structure and reactivity of gas phase ions, 37

Uncertainty analysis

Secondary ion mass spectrometry measurements of isotopic ratios: correction for time varying count rate, 107

U-series dating

Uranium-series dating of corals in situ using laser-ablation MC-ICPMS, 27

Vertical detachment energy

The aluminum phosphides Al_mP_n (m+n=2-5) and their anions: structures, electron affinities and vibrational frequencies, 149

Vertical electron affinity

The aluminum phosphides Al_mP_n (m+n=2-5) and their anions: structures, electron affinities and vibrational frequencies, 149

Vibrational frequencies

The aluminum phosphides ${\rm Al}_m{\rm P}_n$ (m+n=2-5) and their anions: structures, electron affinities and vibrational frequencies, 149

Virtual 2-D gel electrophoresis

Top-down, bottom-up, and side-to-side proteomics with virtual 2-D gels, 317

VOC decomposition

Electron impact ionisation cross-sections of 2-heptanone, 161

Water binding energy

Hydration of small peptides, 221

Water binding site

Hydration of small peptides, 221

Zwitterion

Hydration of small peptides, 221